Problem S7.1: Look-back to Lectures 9, 10, 11 (15 points)

The satellite and scientific probe for the Gravity Probe-B experiment (launched in 2004) can be modeled as shown in the schematic below. The mass m_{1} represents the mass of the spacecraft plus helium tank. The mass m_{2} is the probe. The coupling between the probe and spacecraft is modeled using a spring with spring constant k and a dashpot with damping coefficient c. A force $f(t)$ is applied to the spacecraft body as shown. The displacement of the spacecraft and probe with respect to the inertial reference are respectively $d_{1}(t)$ and $d_{2}(t)$.

Figure 1: Schematic for the Gravity Probe-B model, Question S7.1.
(a) Derive the differential equations governing this system.
(b) If the input is the applied force $f(t)$ and the output of interest is the probe position $d_{2}(t)$, derive the state-space matrices A, B, C, and D, using state variables $d_{1}, \dot{d}_{1}, d_{2}$, and \dot{d}_{2}.
(c) The motion of the probe is expected to be very small, so your team lead prefers you to use the following state variables: $d_{1}^{\prime}=10^{6} d_{1}, \dot{d}_{1}^{\prime}, d_{2}^{\prime}=10^{6} d_{2}, \dot{d}_{2}^{\prime}$. What are the state-space matrices $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} for this choice of state?
(d) What is the transformation matrix T that relates the state in part (c) to the state in part (b), i.e.

$$
\vec{x}^{\prime}=T \vec{x} ?
$$

Show that the matrices you obtained in part (c) could also be obtained through the relationships derived in Lecture S11, i.e.

$$
A^{\prime}=T A T^{-1}, B^{\prime}=T B, C^{\prime}=C T^{-1}, D^{\prime}=D .
$$

(e) For the choice of state

$$
\vec{x}^{\prime \prime}=\left[\begin{array}{lll}
d_{1} & \dot{d}_{1} & \left(d_{2}-d_{1}\right) \\
\left(\dot{d}_{2}-\dot{d}_{1}\right)
\end{array}\right]^{T},
$$

give the transformation matrix T and the state-space matrices $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, and $D^{\prime \prime}$.
(f) For the values $m_{1}=2000 \mathrm{~kg}, m_{2}=1000 \mathrm{~kg}, k=3.2 \times 10^{6} \mathrm{Nm}$, and $c=4.6 \times 10^{3} \mathrm{Nm} / \mathrm{s}$, compute the eigenvalues of your state dynamics matrices A, A^{\prime}, and $A^{\prime \prime}$.
(g) For each eigenvalue (or each complex pair of eigenvalues) write one sentence explaining the physical meaning of the eigenvalue with reference to the satellite-probe system.

Problem S7.2: Look-ahead to Lectures S14 and S15 (15 points)

You saw in SL9 that the Quanser roll subsystem acts largely as a lightly damped second-order system. To simplify the analysis here, we will ignore the damping, and model the Quanser roll dynamics as a second-order undamped system. The state equations in state-space form therefore have the form:

$$
\underbrace{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]}_{\dot{\vec{x}}}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-w_{n}^{2} & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{\vec{x}}+\underbrace{\left[\begin{array}{l}
0 \\
k
\end{array}\right]}_{B} u,
$$

where the states have been chosen to be the roll angle and the roll rate, i.e. $x_{1}=\phi$ and $x_{2}=\dot{\phi}$. The input $u(t)$ is the voltage.

We will use a typical value for the Quanser natural frequency of $\omega_{n}=1 \mathrm{rad} / \mathrm{s}$. The constant k takes a value $k=1$.
(a) Compute the eigenvectors, v_{1} and v_{2}, and the eigenvalues, λ_{1} and λ_{2}, of the state dynamics matrix A.
(b) One possible choice for a state transformation is to use the eigenvectors of A. Use the following state transformation:

$$
\vec{x}=V \vec{x}^{\prime}
$$

where $V=\left[v_{1} v_{2}\right]$ is the matrix whose columns contain the eigenvectors of A. (So we have chosen $V=T^{-1}$, using the notation in Lecture S11.) Compute the transformed state matrices A^{\prime} and B^{\prime}. (Hint: if you first normalize your eigenvectors, then since the eigenvectors form an orthonormal set, V^{-1} can be easily computed as the complex conjugate transpose of V.)
(c) What do you notice about the form of your transformed matrix A^{\prime} ?
(d) We wish to compute the state response of the Quanser to a step input in voltage, i.e.

$$
v(t)=\left\{\begin{array}{l}
0, t<0 \\
\bar{v}, t>0
\end{array}\right.
$$

where \bar{v} is some constant voltage value. The Quanser is initially at rest, i.e. $x_{1}(0)=0$, $x_{2}(0)=0$. First, compute the response of the transformed state $\vec{x}^{\prime}(t)$. (Hint: you will first need to transform the initial conditions to the new state.) Then transform your resulting solution for $\vec{x}^{\prime}(t)$ to obtain $\vec{x}(t)$.
(e) Verify that your solution for $\vec{x}(t)$ in part (d) satisfies the original state-space system and given initial conditions.

Extra Practice Problems

1. Sketch the block diagrams for your three state-space systems in Question S7.1.
2. Sketch the block diagrams for your two state-space systems in Question S7.2. More questions will be posted over the weekend...
